metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nobuo Okabe,* Yoshio Wada and Yasunori Muranishi

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail: okabe@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C-C}) = 0.016 \text{ Å}$ R factor = 0.047 wR factor = 0.188 Data-to-parameter ratio = 19.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A polymeric cadmium(II) complex of fusaric acid

Received 11 June 2002 Accepted 24 June 2002

Online 29 June 2002

The title compound, *catena*-poly[[aqua(5-butyl-2-pyridine carboxylato- $\kappa^2 N$, *O*)cadmium(II)]- μ -5-butyl-2-pyridinecarboxylato- $\kappa^3 N$, *O*:*O'*], [Cd^{II}(C₆H₄NO₂)₂(H₂O)], is a polymeric structure containing six-coordinate Cd^{II} in a distorted octahedral arrangement. The Cd^{II} atom is bonded to two N,O-bidentate ligands and one water O atom. The sixth coordination site is filled by a bridging Cd–O bond from a neighboring ligand.

Comment

Fusaric acid (5-butylpyridine-2-carboxylic acid or 5-butylpicolinic acid) is a fungal toxin, a mycotoxin produced by the Fusarium species which causes infections in cereal grains and agricultural commodities (Wang & Ng, 1999). It shows toxic activity towards some mammalian cell lines such as dog kidney fibroblast, rat hepatoma and Chinese hamster ovary (Wang & Ng, 1999). It and the related compound picolinic acid (2pyridinecarboxylic acid) also induce apotosis in human promyelocytic leukemic HL-60 cells (Ogata et al., 2001). On the other hand, the chelation of these compounds enhances the Fenton reaction which generates active oxygen species; the enhancement may be partly related to their biological activities, such as a marked growth-inhibitory action on rice seeding (Iwahashi et al., 1999). For these reasons, it seems important to determine the structure of the chelate compounds of fusaric acid. DNA single-strand scission has been found in the kidneys and lungs of rats after parenteral administration of Cd^{II} and Ni^{II} (Kasprzak, 2002), and in the present study, the structure of the cadmium(II) complex, (I), has been determined.

This is the first report of the structure of a metal complex of fusaric acid. The molecular structure of (I) is shown in Fig. 1. It has a polymeric structure in which neighboring Cd^{II} ions are linked through carboxylate O atoms of a ligand molecule. One coordination unit consists of $[Cd^{II}(fusa)_2(H_2O)]$ (fusa is fusaric acid). The central Cd^{II} atom has a distorted octahedral

 \bigcirc 2002 International Union of Crystallography Printed in Great Britain – all rights reserved coordination geometry; it is bonded to three carboxylate O atoms, two N atoms of the two bidentate ligand molecules and one water O atom. Both carboxyl groups of the ligand molecules are ionized and essentially coplanar with the pyridine ring planes, as indicated by the relevant torsion angles [O1– C7-C2-N1-171.5 (9)° and O4-C17-C12-N2-2.2 (9)°]. Both butyl groups are positioned out of the planes of the pyridine rings, as indicated by the torsion angles C4-C5-C8-C9 of 76 (1)° and C14-C15-C18-C19 of 85 (1)°. The conformations of the butyl groups of the two ligand molecules are quite different from each other; one (C8–C9–C10–C11) has a gauche-trans conformation with respect to the C8-C9 bond $[C5-C8-C9-C10 \ 67 \ (1)^{\circ}]$ and the C9-C10 bond $[C8-C9-C10-C11\ 173\ (1)^{\circ}]$, respectively; the other (C18-C19-C20-C21) has a trans-gauche conformation with respect to the C18-C19 bond [C15-C18-C19-C20 $175.8 (9)^{\circ}$ and C19-C20 bond [C18-C19-C20-C21 $65 (1)^{\circ}$], respectively.

The distances between Cd^{II} and the carboxylate O atoms are shorter than those observed in the dinuclear cadmium(II) complexes of picolinic acid [Cd-O 2.313(3)-2.332(3)]Å; Odoko et al., 2001] and of pyridine-2,6-dicarboxylic acid [Cd-O 2.376–2.478 Å; Odoko et al., 2002]. By contrast, the Cd–N distances are longer than those observed in those compounds [Cd-N 2.309-2.326 Å]. There is no stacking interaction between the pyridine rings in the crystal structure. The coordinated water O atom is hydrogen bonded to neighboring carboxylate O atoms $[O5 \cdots O1^i 2.76(1) \text{ Å} and O5 \cdots O4^{ii}]$ 2.66 (1) Å; symmetry codes as in Table 2]. The crystal structure is stabilized by its polymeric nature, van der Waals interactions and hydrogen-bond formation.

Experimental

The colorless plate-shaped crystal used for analysis was obtained by slow evaporation from a 50% ethanol-water solution of a mixture of fusaric acid and cadmium(II) chloride (4:1).

Crystal data

$[Cd(C_6H_4NO_2)_2(H_2O)]$
$M_r = 486.84$
Monoclinic, $P2_1/c$
a = 15.610(3) Å
b = 9.623 (4) Å
c = 15.923 (3) Å
$\beta = 116.17 \ (1)^{\circ}$
$V = 2146.7 (11) \text{ Å}^3$
Z = 4

Data collection

Rigaku AFC-5R diffractometer ω -2 θ scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.777, T_{\max} = 0.949$ 5402 measured reflections 4939 independent reflections 2200 reflections with $I > 2\sigma(I)$

 $D_x = 1.506 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 12.0 - 14.1^{\circ}$ $\mu = 1.05 \text{ mm}^{-1}$ T = 296.2 KPlate, colorless $0.40 \times 0.20 \times 0.05 \text{ mm}$

 $R_{\rm int}=0.065$ $\theta_{\rm max} = 27.5^{\circ}$ $h = 0 \rightarrow 20$ $k = 0 \rightarrow 12$ $l=-20\rightarrow 18$ 3 standard reflections every 150 reflections intensity decay: 1.3%

Figure 1

ORTEPII (Johnson, 1976) drawing of the title compound, with the atomic numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
$wR(F^2) = 0.188$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.92	$(\Delta/\sigma)_{\rm max} < 0.001$
4939 reflections	$\Delta \rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3}$
255 parameters	$\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cd1-O2	2.262 (7)	O1-C7	1.22 (1)
Cd1-O3 ⁱ	2.308 (7)	O2-C7	1.25 (1)
Cd1-O4	2.301 (6)	O3-C17	1.245 (9)
Cd1-O5	2.274 (8)	O4-C17	1.26(1)
Cd1-N1	2.370 (7)	C4-C5	1.40(1)
Cd1-N2	2.333 (8)		
O2-Cd1-O3 ⁱ	125.8 (2)	O4-Cd1-N2	70.5 (3)
O2-Cd1-O4	139.6 (2)	O5-Cd1-N1	148.5 (3)
O2-Cd1-O5	94.9 (3)	O5-Cd1-N2	86.5 (3)
O2-Cd1-N1	71.8 (3)	N1-Cd1-N2	119.7 (2)
O2-Cd1-N2	86.2 (3)	Cd1-O2-C7	119.8 (8)
$O3^i - Cd1 - O4$	85.3 (2)	Cd1 ⁱⁱ -O3-C17	127.6 (6)
O3 ⁱ -Cd1-O5	84.3 (3)	Cd1-O4-C17	119.3 (6)
O3 ⁱ -Cd1-N1	81.3 (2)	Cd1-N1-C2	113.0 (6)
O3 ⁱ -Cd1-N2	147.3 (2)	Cd1-N1-C6	127.8 (5)
O4-Cd1-O5	115.3 (2)	Cd1-N2-C12	116.6 (6)
O4-Cd1-N1	91.3 (2)	Cd1-N2-C16	124.2 (5)

Symmetry codes: (i) $-x, y - \frac{1}{2}, \frac{3}{2} - z$; (ii) $-x, \frac{1}{2} + y, \frac{3}{2} - z$.

Table 2

Hydrogen-bonding geometry (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D-H\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$D5-H5WA\cdots O1^{i}$	0.85	2.08	2.76 (1)	137
	$D5-H5WB\cdots O4^{ii}$	0.84	1.84	2.66 (1)	167

Symmetry codes: (i) -x, -y, 2-z; (ii) $-x, y - \frac{1}{2}, \frac{3}{2} - z$.

All H atoms were located from difference Fourier maps. However, the non-water H atoms were then placed at ideal positions and refined using a riding model; the water H atoms were not refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation & Rigaku, 1999); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 1999); program(s) used to solve structure: *SIR*88 (Burla *et al.*, 1999) and *DIRDIF*94 (Beurskens *et al.*, 1992); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *TEXSAN*.

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.

- Iwahashi, H., Kawamori, H. & Fukushima, K. (1999). Chem.-Biol. Interac. 118, 201–215.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kasprzak, K. S. (2002). Free Rad. Biol. Med. 32, 958-967.
- Molecular Structure Corporation & Rigaku (1999). MSC/AFC Diffractometer Control Software and TEXSAN (Version 1.10). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Odoko, M., Isomoto, N. & Okabe, N. (2001). Acta Cryst. E57, m371-m372.
- Odoko, M., Kusano, A. & Okabe, N. (2002). Acta Cryst. E58, m25-m27.
- Ogata, S., Inoue, K., Okumura, K. & Taguchi, H. (2001). Biosci. Biotech. Biochem. 65, 2337–2339.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Wang, H. & Ng, T. B. (1999). Life Sci. 65, 849-856.